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An Extended Social Force Model via Pedestrian
Heterogeneity Affecting the Self-Driven Force
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Abstract— As one of the most effective models for human
collective motion, the social force model (SFM) simulates the
dynamics of crowd evacuation from a microscopic perspective.
However, it treats pedestrians as the homogeneous rigid particles,
whereas pedestrians are diverse and heterogeneous in real life.
Therefore, this paper develops a pedestrian heterogeneity-based
social force model (PHSFM) by introducing physique and mental-
ity coefficients into the SFM to quantify physiology and psychol-
ogy attributes of pedestrians, respectively. These two coefficients
can affect the self-driven force by changing the desired speed,
thus characterizing the pedestrian heterogeneity more realis-
tically. Simulation experiments demonstrate that the PHSFM
designs a more general and accurate theoretical framework for
the expression of pedestrian heterogeneity, which realizes special
behavior patterns caused by individual diversity. Furthermore,
our model provides effective guidelines for the management
of crowds in potential research fields such as transportation,
architectural science and safety science.

Index Terms— Crowd dynamics, social force model, pedestrian
heterogeneity, evacuation management, nonlinear system.

I. INTRODUCTION

CROWD dynamics have long been a question of great
interest in a wide range of fields, which involve human

collective behavior in physics [1], traffic flow control in
transportation [2], structural design in architectural science [3]
and management of large-scale events in safety science [4],
etc. The theories and simulation models of crowd dynamics
are important, since they play a decisive role in these fields.
The existing body of research suggests fascinating impressions
of patterns observed in human crowds are adequately rendered
by a variety of models [5]. In an attempt to reveal the
underlying mechanisms of human crowd motion [6], these
models tend to cover physical, biological and social human
features, and account for a lot of behavior patterns such as
herding behavior [7], self-stopping behavior [8] and group
walking behavior [9]. Nevertheless, how to explicate special
behavior patterns caused by individual heterogeneity remains a
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considerable challenge. In fact, a model incorporating hetero-
geneity could perform more realistic behavior patterns, which
has crucial guiding significance for the above-mentioned
fields.

From the perspective of modeling, crowd dynamics
have been developed following two aspects: macroscopic
and microscopic models. Macroscopic models regard the
large-scale crowd as fluid or gas from a holistic aspect [10],
however, they are inefficient to describe the individual inter-
action. In contrast, microscopic models are widely applied to
uncover the potential laws of crowd motion [11], capturing
and elucidating the details of pedestrian movement at the
individual level. As one of the most well-known micro-
scopic models, the social force model (SFM) [12], [13], has
been successful in simulating the crowd motion and forming
self-organization phenomena such as lane formation [12],
faster-is-slower effect [13], and stop-and-go waves [14], etc.
To our knowledge, however, there are still some problems.
Given that the SFM regards pedestrians as the homogeneous
rigid particles in Newtonian mechanics, this leads to a practical
difficulty in describing individual differences in crowd dynam-
ics. In addition, some influence factors considered by existing
improved models are not comprehensive enough, resulting in a
lack of versatility [15]. Therefore, incorporating the pedestrian
heterogeneity in SFM is significant and challenging.

On the one hand, pedestrians are deemed to be aver-
age soccer fans, whose shape, mass and desired speed are
nearly assumed to be homogeneous [9], [13]. Although this
assumption simplifies the complexity of SFM to some extent,
it is contrary to actual situations because pedestrians in
crowds are diverse and heterogeneous. In recent researches,
Song et al. [16] considered the multi-circle model can more
realistically represent the two-dimensional body shape of
pedestrians. Moussaïd et al. [17] adopted heuristics rules to
simulate collective social behaviors according to the differ-
ence of vision range. From the individual point of view,
the above characteristics are unique pedestrian attributes (i.e.
age, gender, height, weight, body shape, and vision range,
etc.), which are called as physiology attributes in this paper.
However, taking the physiology attributes into account may
raise some theoretical issues. Older people tend to adopt
a more conservative basic gait pattern [18], but do young
people have advantages over elders in the movement process?
How does the relationship between height and weight affects
evacuation efficiency? The potential answers to the above
questions may be very interesting.
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On the other hand, when an emergency or disaster occurs,
pedestrians may perform irrational behaviors due to the change
of psychological state. The SFM can simulate the dynamic
characteristics of escape panic, while the factors influenc-
ing pedestrian psychology are multiple in realistic scenarios.
To measure the heterogeneity at the psychological level, psy-
chology attributes (i.e. identity, character, temperament, and
familiarity, etc.) are illustrated to describe the dynamic percep-
tion of environmental change. Social psychologists proposed
the theories of cognitive behavior, social identity, and coopera-
tion and competition [19], [20], which characterize the impact
of different psychology attributes on pedestrians in realistic
scenes. Nevertheless, most of these theories are conceptual
descriptions, lacking sufficient mathematical expression and
model support [21].

In recent years, existing researches have recognized the
critical role played by pedestrian heterogeneity in crowd
simulations. For discrete models, they were mainly char-
acterized by heterogeneous updating rules. Guo et al. [22]
established a heterogeneous lattice gas model considering
the critical damage force, local density, and exit congestion.
Li et al. [23] proposed a behavior-based cellular automata
model to express the motion feature and behavior preference of
diverse pedestrians. With regard to continuous models, studies
conducted by relevant researchers [24]–[26] have shown that
factors such as cognitive capability, physical strength degree,
and types of disabled people could be included in SFM to
reflect the pedestrian heterogeneity, making the simulation
more realistic. However, these models are difficult to form a
general framework, resulting in poor scalability when other
heterogeneous clues are considered. Moreover, there exist-
ing certain limitations in crowd simulation software when
it comes to pedestrian heterogeneity [27]. Although Legion
and STEPS are based on cellular automata model and pos-
sess high computational efficiency, they lack the ability of
secondary development to incorporate heterogeneous factors.
AnyLogic and PTV Viswalk, supported by SFM as modeling
principle, are reliable tools for simulating crowd dynamics.
Whereas it is still an open question to embed pedestrian
heterogeneity into the above software as a universal extension
component, especially comprising physiology and psychology
features.

To establish a more general and accurate theoretical frame-
work from the perspective of physiology and psychology
attributes, this paper proposes a pedestrian heterogeneity-based
social force model (PHSFM), which effectively overcomes the
above problems. The physique and mentality coefficients are
simultaneously employed to quantify pedestrian heterogeneity,
which affects the desired speed in SFM. In fact, the simplicial
representations are indeed more suited than merely one or sev-
eral factors involving the heterogeneity to describe the human
crowds in real-world situations. From the experiments based
on library simulation scenarios, we demonstrate the PHSFM
simulates the pedestrian evacuation process more realistically
in response to different emergencies. The comparative analysis
with existing improved models illustrates how the PHSFM
describes the pedestrian heterogeneity in a more general way.
Furthermore, both additive and multiplicative rules provide a

direction for more comprehensive interpretations of pedestrian
heterogeneity.

The rest of this paper is organized as follows. In Section II,
physique and mentality coefficients are quantified, and the
PHSFM is illustrated. Section III provides corresponding
numerical simulations and analyzes the effect of pedestrian
heterogeneity on crowd evacuation. Finally, the discussion and
future research topics are described in Section IV.

II. MODEL

A. Physique Coefficient

The physiology attributes of pedestrian i at time t are
represented by a function Pi (t), which represents the physique
coefficient. Physiology attributes are characterized by high
stability with slight variation, where the stability refers to the
sensitivity of pedestrians to internal perturbations caused by
muscles or neural control [28]. On the one hand, owing to the
instinctual reflex of pedestrians on emergencies, the dynamic
process of physiology attributes is considered to be a fluctua-
tion response confined to a specific range [29], approximated
by one-dimensional Brownian motion. On the other hand,
the risk index λ ∈ [0, 1], used to measure the degree of
emergencies, has a certain impact on the volatility of physique
coefficient. Thus, for ∀t ≥ t0, �t > 0, the physique coefficient
Pi (t) can be expressed as follows:

Pi (t +�t)− Pi (t) ∼ N
(

0, λ2�t
)

(1)

where N (·) denotes the normal distribution and the time
step is set to �t = 0.04s, Pi (t) is a continuous function
of t with stationary independent increment. Compared with
the Gaussian distribution, the Beta distribution limits the
value interval and has the parameter flexibility, it is more
reasonable to assign physique coefficients for different types
of pedestrians at initial time t0. Assuming a random variable
Xi ∼ Beta (α, β), and the corresponding probability density
function is given by:

fXi ( xi | α, β) = � (α + β)

� (α) � (β)
xα−1

i (1 − xi )
β−1 (2)

where α > 0, β > 0, and � (·) represents the Gamma function.
The random variable Xi is transformed as the location-scale
family, constructing a mapping function g : D → R on
the interval D = [0, 1]. Then the physique coefficient of
pedestrian i at initial time t0 can be obtained in the following
form:

g (D) = { Pi (t0)| Pi (t0) = μ+ σ xi , xi ∈ D} (3)

Here, the location parameter μ ∈ R+ and the scale parameter
σ ∈ R+ determine the lower bound and the interval range of
Pi (t0), respectively.

In this case, the range of Pi (t) is evaluated according to the
empirical data of stride interval time series in gait dynamics
theory [30]. The fluctuation interval is given by:

Pi (t) ∈ [(1 −�P ) Pi (t0) , (1 +�P ) Pi (t0)] (4)

in which �P denotes the maximum fluctuation range, with a
general approximation of �P ≈ 0.1.
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B. Mentality Coefficient

From the psychological perspective, the SFM fails to effec-
tively reveal the pedestrian heterogeneity, since the psychology
characteristics are complicated during the evacuation process.
Therefore, we employ the mentality coefficient to describe the
comprehensive psychology states of pedestrians in real scenes.

Social psychology studies show that “stress” is a more
accurate concept than “panic” to describe the pedestrian psy-
chology [31]. The stress of a pedestrian originates from the
cognition to other individuals and environments. Although the
panic parameter pi (t) = 1− v̄i (t)

/
v0

i is proposed to measure
the impatience of pedestrians [13], it ignores the influence
of environments. However, the degree of emergencies is con-
firmed to make the psychology attributes of pedestrians differ
from that in normal conditions [31].

Hence, the impact of emergencies on psychology can be
considered as another factor, which is assumed as an expo-
nential function of the risk index λ. Summing up the above
illustration, the stress of pedestrian i is defined as follows:

si (t) = exp (λ)
{
[1 − pi (t)] δnor

i + pi (t) δ
max
i

}
(5)

Here, δnor
i = vnor

i

/
v0

i and δmax
i = vmax

i

/
v0

i , where vnor
i is the

desired speed in normal and vmax
i the maximum desired speed

in panic. Generally, the value of δnor
i is equal to 1.

Further, the discomfort can be felt by pedestrian i if other
individuals appear in his/her personal zone (0.46–1.22m) [32],
which can be represented by a circular area with a radius
r̃i ≈ 4ri . The pedestrian density in the personal zone can be
expressed by the following:

ρi (t) = ni (t)
/
π r̃2

i (6)

where ni (t) denotes the number of pedestrians in this zone
at time t . As the pedestrian density increases, the stimulus
intensity signals of surrounding environment are simultane-
ously relayed to the mechanism of enhancement and suppres-
sion [33], which may inspire two other interesting psychology
states, namely cooperation and competition.

The current researches on evacuation dynamics [34] indicate
that the cooperation frequency can be maintained at a high
level when the risk index is low. As the risk index raises,
the cooperation frequency decreases. However, there may still
exist cooperative behavior even if the emergency is life-
threatening. Based on the above analysis, the probability of
cooperation in the personal zone is assumed to follow a
Boltzmann-like relation with the risk index λ:

γi (λ) = γ0 exp (−wiλ) (7)

Here, γ0 = 0.95 represents the cooperation probability in
non-emergency evacuation scenario and wi is the attenuation
rate of the cooperation probability, inseparable from the social
psychology and subjective cognition of pedestrian i . Assuming
the random variable ηi of psychological state selection follows
the Bernoulli distribution, expressed as follows:

ηi =
{

+1, 1 − γi (λ)

−1, γi (λ)
(8)

Here, ηi = −1 if pedestrian i chooses to cooperate, otherwise
ηi = +1 corresponds to pedestrian i competes with others.

In order to acquire the expression of mentality coeffi-
cient, the Sigmoid function is also introduced to quantify
the state transition process, similar to the neuron activation
response [35]. The function of state transition is written as
follows:

ψi (t) = 1

1 + exp
[−ηiρi (t)

/
kM

] (9)

where kM indicates its slope. If the stress is regarded as a
basic state, the transition of psychology state occurs when
the pedestrian density in the personal zone changes. Thus,
the mentality coefficient of pedestrian i can be described by:

Mi (t) = si (t) [(1 −�M )+ 2�Mψi (t)] (10)

where �M is the maximum mutation. In the simulation,
�M ≈ 0.5 according to the reaction performance of the
neurocognitive mechanism.

C. Pedestrian Heterogeneity-Based Social Force Model

The SFM is based on Newtonian mechanics to simulate
crowd motion. However, many expansions of SFM [17], [36]
including itself treat pedestrians as the same particles, which
has certain limitations. Therefore, the PHSFM is developed
from the physiology and psychology levels. The combined
effect of forces leads to dynamic changes in pedestrian accel-
eration, which is based on the nonlinear coupled Langevin
equations of motion:

mi
dvi (t)

dt
= f H

id +
∑
j (�=i)

fi j +
∑
W

fiW (11)

where f H
id , fi j and fiW respectively represent a self-driven force

generated by the pedestrian, a force on the pedestrian due to
agent-neighbor interactions, and an interaction force between
the pedestrian and the walls. Note that the self-driven force
with pedestrian heterogeneity is neglected by SFM.

Here, the self-driven force f H
id with pedestrian heterogeneity

is established by the following:

f H
id = mi

Hi (t) v0
i e0

i − vi (t)

τi
(12)

in which the heterogeneous coefficient Hi (t)=Pi (t) ◦ Mi (t)
is composed of a functional relationship ◦ between physique
and mentality coefficients. Besides, pedestrian i of mass mi

tends to move with the initial desired speed v0
i and desired

direction e0
i , and τi is related to a certain relaxation time for

pedestrian i to adapt to the actual speed.
The interaction force fi j between pedestrian i and j is

borrowed from the SFM:
fi j = Ai exp

[(
ri j − di j

)/
Bi

]
ni j + kg

(
ri j − di j

)
ni j

+κg
(
ri j − di j

)
�v t

j i ti j (13)

where Ai exp
[(

ri j − di j
)/

Bi
]

ni j , kg
(
ri j − di j

)
ni j , and

κg
(
ri j − di j

)
�v t

j i ti j correspond to the repulsive interaction
force, body force, and sliding friction force from pedestrian
i to j , respectively. Ai and Bi are constants, ri j and di j
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TABLE I

SETTING OF PARTIAL PARAMETERS IN PHSFM

denote the radius sum and the distance between the centroids
of pedestrian i and j , and ni j represents the normalized
vector pointing from pedestrian j to i . Besides, k and κ are
both constants, which refer to body elasticity coefficient and
sliding friction coefficient. ti j is the tangential direction and
�v t

j i = (
v j − vi

) · ti j holds the tangential speed difference.
When two pedestrians have no physical contact (ri j < di j ),
g (x) is zero; otherwise, it equals to x .

The last force fiW is generated by the interaction between
pedestrian i and the walls, similar to the expression of fi j :

fiW = Ai exp
[
(ri − diW )

/
Bi

]
niW + kg (ri − diW ) niW

−κg (ri − diW ) (vi · tiW ) tiW (14)

where Ai exp
[
(ri − diW )

/
Bi

]
niW , kg (ri − diW ) niW , and

κg (ri − diW ) (vi · tiW ) tiW represents the repulsive interaction
force, body force, and sliding friction force from pedestrian
i to wall W . Here, diW is the distance between the center
of pedestrians i and the surface of wall W , niW represents
the normalized vector perpendicular to it, and tiW denotes the
tangential direction.

The PHSFM affects the desired speed in SFM by incorporat-
ing the pedestrian heterogeneity, while the parameters of other
terms in PHSFM are consistent with that in SFM. Following
the reasonable assumptions in [13], partial parameters and
corresponding values involved in PHSFM are summarized
in Table I. Furthermore, Fig. 1 illustrates the flowchart of the
simulation process by PHSFM.

III. NUMERICAL SIMULATIONS

A. Experiment Setup

An empirical survey was conducted in Humanities and
Social Sciences Library of Tsinghua University in 2020, and
all participants were guaranteed to receive the survey without
being informed in advance. The purpose of our survey was
to obtain the proportion of different types of pedestrians in
the library scene. Through random sampling, we discovered
that 157 participants (1/5 of the population size) consisted
of 108 college students (proportion = 68.79%; age = 22.41 ±
3.78 yr (mean ± s.d.); 59 males, 49 females), 29 professors
(proportion = 18.47%; age = 52.67 ± 9.83 yr (mean ±
s.d.); 18 males, 11 females), 14 library staff (proportion =
8.92%; age = 38.13 ± 5.48 yr (mean ± s.d.); 5 males,
9 females) and 6 other people (proportion = 3.82%; age =
41.05 ± 4.75 yr (mean ± s.d.); 3 males, 3 females). The
proportions of students, professors and staff are approximately

Fig. 1. Flowchart of the simulation process by PHSFM.

70%, 20% and 10%, regardless of the random influence of
other people. In the simulation experiment, the parameters
are set according to the above-mentioned proportions and
survey data.

In this paper, we try to simulate the crowd evacuation in a
library scene. After inspecting the actual layout of each scene
in the library, the following two common scenes are selected
for our simulation. One is the main corridor of 40 m length
and 5 m width in the library. The pedestrians gather from
other rooms to one side of the corridor and escape towards
the exit of 2 m width on the other side. Another is the reading
room of 24 m length and 16 m width with a 2 m wide single
exit. In case of emergency, the whole pedestrians randomly
distributed in the reading room escape towards the exit. The
simulation experiment is carried out by equally scaling the
scene and pedestrians for the above two scenes.

In order to simulate the evacuation for unsuspected inci-
dents, we use the risk index λ ∈ [0, 1] to measure the degree
of emergencies. According to the types (i.e. fire, terrorist
attack, etc.) and the scales (i.e. slight, severe, etc.) of incidents,
the degree of emergencies is divided into three levels, namely
λ ∈ [0, 0.3), λ ∈ [0.3, 0.7], λ ∈ (0.7, 1.0], which respectively
represent mild level (∗), moderate level (∗∗), and severe level
(∗ ∗ ∗). Note that the risk index λ grows up with the increase
in the degree of emergencies.

B. Effect of Physique Coefficient on Crowd Evacuation

In general, although the physique characteristics for spe-
cific crowd are generated by the Gaussian distribution [37],
the values such as negative numbers and outliers in Gaussian
distribution may have no practical meaning. For simplicity,
we set α = β ≥ 1 in Beta distribution to obtain the
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Fig. 2. Effect of physique coefficient on crowd evacuation. (a) Distributions of physique coefficients for specific crowd. (b) Snapshots of crowd evacuation
under the effect of physique coefficient in the main corridor at 0s, 15s and 30s. The blue, red and yellow circles represent students, professors and staff,
respectively. (c) Effect of the initial physique coefficient of pedestrians, as shown by the temporal evolution of the physique coefficient during the evacuation
process. The curves with different colors correspond to different values for the initial physique coefficients of pedestrians. The dashed horizontal line is a
baseline corresponds to the SFM. (d) Time-varying trend of the average actual speed for specific crowd. The solid lines and error bands respectively represent
the mean and standard deviation in 10 trials. (e) Box plot of evacuation time for specific crowd. The points represent the simulation data in 10 trials, and the
dotted line denotes the average of total pedestrians. (f) High correlation (r = 0.76) between the evacuation time and the initial physique coefficient suggests
physiology attributes are crucial features that determine the evacuation time. The shape points correspond to the simulation data in 10 trials.

“approximate Gaussian distribution” within a limited interval.
Note that the values of α and β can also be adjusted to
distinguish different crowds. In the experiment, the physique
coefficients of students, professors and staff are assumed to be
relatively strong, weak and medium, the initial distributions of
which are shown in Fig. 2(a), corresponding to three different
intervals.

Due to the structure of the library corridor, pedestrians are
less affected by the initial location and congestion, thus it is
beneficial to test the model based on physiology heterogeneity.
Supposing that the risk index λ = 0.5 and 30 pedestrians
scatter on one side of the corridor (21 students, 6 professors
and 3 staff). The snapshots depict the crowd escaped from
one side to the other of the corridor in Fig. 2(b), the simula-
tion phenomenon agrees well with the empirical observation.

Students with strong physique coefficients appear to “catch up”
(t = 15 s) while professors with weak physique coefficients
show “fall behind” (t = 30 s), which intuitively explains the
heterogeneous influence of physiology attributes. The temporal
dynamics of physique coefficients are illustrated in Fig. 2(c),
where various curves show how the physique coefficients of
pedestrians evolve when initial values of different sizes are
considered. Notably, the fluctuation of physique coefficient is
relatively stable, with a larger physique coefficient corresponds
to a wider range of fluctuation. The termination time depends
on the initial value of physique coefficient, implying the exis-
tence of a certain connection between the physique coefficient
and evacuation time.

To quantitatively analyze the influence of physique coeffi-
cient on specific crowd, the average actual speed of crowd� at
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Fig. 3. Influence of risk index on physiology attributes. (a) Fluctuation dynamics of physique coefficient under mild, moderate and severe levels, a higher risk
index corresponds to a more violent fluctuation in the fixed interval. (b) Variations of the standard deviation of fluctuation for specific crowd under different
risk indexes. (c) Radar map of the average evacuation time for specific crowd under different risk indexes. (d) Temporal dynamics of the number of exited
pedestrians under the influence of risk index. The gray dotted lines correspond to the upper and lower bounds and the gray area is the fluctuation interval.
(e) Variations of the order parameter under mild, moderate and severe levels. High order parameters demonstrate the crowd holds relatively order regardless
of the risk index.

time t is defined as follows:
v̄� (t) = 1

N�

∑
i∈�

|vi (t)| (15)

where � represents the specific crowd and N� is the number
of pedestrians in crowd �. In Fig. 2(d), there are obvious
differences between the average actual speed among students,
professors and staff regardless of the sprint phase or the
congestion phase, which is consistent with the phenomenon
that emerged in Fig. 2(b). Naturally, the box plot of Fig. 2(e)
indicates that students with superior physiology attributes
occupy a dominant position in the process, whereas the
evacuation efficiencies of staff and professors decrease in turn.
Moreover, as shown in Fig. 2(f), the evacuation time and the
initial physique coefficient are found to have a high correlation
r = 0.76 even if there are interferences caused by locations
and obstructions, which validates the inference from Fig. 2(c).
Thus, it is preliminarily illustrated that our model achieves a
more consistent phenomenon with the empirical observation
by incorporating the physiology heterogeneity.

C. Influence of Risk Index on Physiology Attributes

In addition, we want to know whether the risk index λ
affects the above simulation results. Fig. 3(a) presents the
fluctuation dynamics of physique coefficient under different
risk degrees. We take the pedestrian i with Pi (t0) = 1 as an
example, it is clear that a higher risk index corresponds to a
more violent fluctuation in the fixed interval [0.9, 1.1]. Assum-
ing that ti is the exited moment of pedestrian i , the standard
deviation of fluctuation ξi is defined for quantitative analysis

and can be calculated as follows:

ξi =
√√√√ 1

ti − t0

ti∑
t=t0

[Pi (t)− Pi (t0)]2 (16)

As shown in Fig. 3(b), in the horizontal direction, the stan-
dard deviation of fluctuation grows up as the risk index λ
increases. In the vertical direction, when the risk index λ
is fixed, there are differences in the standard deviation of
fluctuation among various crowds. This reflects the impact
of risk index λ on physiology attributes for different types
of pedestrians. However, the average evacuation time corre-
sponds to specific crowd is almost maintained at a stable state
in Fig. 3(c), which demonstrates the physiology attributes still
hold high stability regardless of the degree of fluctuation.

When all pedestrians are viewed as a whole, the curves of
evacuation efficiency are depicted in Fig. 3(d). The upper and
lower bounds of evacuation efficiency represent the situation
where the physique coefficient is taken as two critical values
of the fluctuation interval. Even if the risk index varies,
the evacuation efficiency of pedestrians is still limited to the
fluctuation interval. To explore the internal laws of crowd
dynamics at each moment, a system order parameter proposed
by Vicsek et al. [38] is adopted to measure the order of
pedestrian motion. The order parameter is defined as follows:

ϕ (t) = 1
N∑

i=1
|vi (t)|

∣∣∣∣∣
N∑

i=1

vi (t)

∣∣∣∣∣ (17)

where N is the number of remaining pedestrians. As expected
from the results in Fig. 3(e), the order parameters are
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Fig. 4. Effect of mentality coefficient on crowd evacuation. (a) Three kinds of psychology states available to each pedestrian. Given that its previous moving
direction is along the dashed line, where cooperation, stress and competition respectively correspond to slow, normal and fast movements in the same direction.
(b) Transition process of different psychology states, the positive direction is activated as a competitive state while the negative direction is a cooperative
state. (c) Cooperation probability as a function of the risk index, the attenuation rates of staff, students and professors increase in turn. (d) Snapshots of crowd
evacuation under the effect of mentality coefficient in the reading room at 0s, 8s, 16s and 24s. The blue, red and yellow circles represent students, professors
and staff, respectively. (e) Temporal evolution of the number of pedestrians in different psychology states. All states exist on the left side of the dashed line,
while only cooperation and competition exist on the right side due to the crowd aggregation. (f) Time-varying trend of the average actual speed for specific
crowd. The solid lines and error bands respectively represent the mean and standard deviation in 10 trials. (g) Box plot of evacuation time for specific crowd.
The points represent the simulation data in 10 trials, and the dotted line denotes the average of total pedestrians.

significantly high under mild, moderate and severe levels.
The crowd holds relatively order under different risk indexes,
further indicating the high stability of physiology attributes.

D. Effect of Mentality Coefficient on Crowd Evacuation

The threat perception is closely related to pedestrian psy-
chology, leading to differences in personal decision-making.
Accordingly, it is worth discussing the effect of mentality
coefficient on the evacuation process by neglecting the phys-
iology attributes. The pedestrian is in a state of stress if
no individual appears in the personal zone, and the state of
stress may be transformed into a state of either cooperation or
competition when other individuals emerge in the area. These
three potential psychology states are described in Fig. 4(a),
resulting in the decrease, maintenance and increase of the
desired speed. Fig. 4(b) shows the transition process of three
kinds of psychology states, where the activation of Sigmoid
function is related to cooperation probability ηi and pedestrian

density ρi (t). Note that the stress is activated as a competitive
state in the positive direction while the negative direction is a
cooperative state.

Sociological studies pointed out that pedestrians in different
social groups possess characteristic behavior mechanisms,
caused by the interaction of psychological perception and
social assessment process [39]. Hence, students, professors
and staff show different cooperation probabilities in the face
of an emergency. The cooperation probability of staff is
relatively high, since it is their responsibility to assist students
and professors to evacuate. Considering the social status of
professors, their cooperation probability may be slightly lower
than that of students. Thereby, for students, professors and
staff, the attenuation rate of cooperation probability is simply
assumed to be wi = 2.0, 2.5 and 1.25. Fig. 4(c) presents the
cooperation probability γi (λ) as a function of the risk index λ,
there existing a distinct difference in cooperation probability
among various crowds when the risk index is fixed as λ = 0.5.
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Fig. 5. Influence of risk index on psychology attributes. (a) Variations of the desired speed for specific crowd under different risk indexes. (b) Radar map of
the average evacuation time for specific crowd under different risk indexes. (c) Temporal dynamics of the number of exited pedestrians under the influence
of risk index. The dashed arrow indicates the trend of the curves when the risk index grows up. (d) Variations of the order parameter under mild, moderate
and severe levels. The transformation of crowd changes from relative order to relative disorder as the risk index increases. (e) Characterization of “crowd
pressure” in the scene corresponding to the risk index λ = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Red areas represent a high risk of falling, indicating potential areas
of crowd disaster and casualties.

The interaction scenario of library reading room in Fig. 4(d)
is more prone to gather crowds and conducive to highlighting
the heterogeneous impact of psychology attributes. At initial
moment (t =0 s), the pedestrians distributed in different
positions begin to escape towards the exit. Then the crowd
gathers at the exit to form an “arch”, accompanied by the
phenomenon that some individuals push against each other
(t =8 s). With a further extension of time (t = 16 s and
t = 24 s), the majority of staff members remain behind the
team to assist others to escape, which seems intuitively con-
sistent with the social difference of specific crowd. Fig. 4(e)
depicts the temporal evolution of the number of pedestrians
in three kinds of psychology states, and cooperation and
competition are prominent after the crowd gathered. Evidently,
the staff has a large proportion of cooperation, revealing the
reason why most staff stay behind the crowd. Analogously,
the results of 10 trials are employed to analyze the influence of
the mentality coefficient. In Fig. 4(f), there is little distinction
in the average actual speed during the sprint phase, whereas the
average actual speed of staff is lower than that of students and
professors during the congestion phase. The relatively slow
actual speed directly extends the universal evacuation time of
the staff in Fig. 4(g). This indicates that psychology attributes,
as unique characteristics of human crowds, play an important
role in the evacuation process.

E. Influence of Risk Index on Psychology Attributes

Actually, the cooperation probability of specific crowd is
significantly different as the risk index λ changes, which
may cause differences in the evacuation process. With the

increase of the risk index, as shown in Fig. 5(a), the desired
speed of crowds rises. In non-emergency situations (λ = 0.0),
the desired speed is low and almost the same due to the high
proportion of cooperation. A higher risk index corresponds
to a larger distinction of desired speed. This is attributed
to the fact that the change in the proportion of coopera-
tion and competition for specific crowd. From Fig. 5(b),
for moderate and severe levels of emergencies, professors
with lower cooperation probability correspond to the shortest
average evacuation time, while the staff with more cooperative
behaviors perform the longest average evacuation time due to
the professional spirit.

From the perspective of all pedestrians, the temporal dynam-
ics of the number of exited pedestrians are shown in Fig. 5(c).
The slope increment of the curve reflects the degree of
psychology stimulation in response to a higher risk index,
resulting in a higher escape efficiency of total pedestrians.
Fig. 5(d) illustrates the variations of order parameter under
mild, moderate and severe levels. As the degree of emergency
exacerbates, the order parameter curves elucidate the transition
of the crowd changes from relatively order to relatively disor-
der, which is a dangerous phenomenon that may interfere with
pedestrian decisions. Furthermore, the curves of evacuation
efficiency merely indicate the characteristics from the time
dimension, but we expect to conduct a deeper analysis from the
spatial dimension. Here, given the “crowd pressure” C (x) [17]
to measure the local pressure at place x as follows:

C (x) = ρ (x)V arx [V (x, t)] (18)

where ρ (x) = 〈ρ (x, t)〉t represents the temporal average of
the local density, and the local density at place x and time t

Authorized licensed use limited to: Tsinghua University. Downloaded on November 02,2023 at 22:26:08 UTC from IEEE Xplore.  Restrictions apply. 



7982 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 7, JULY 2022

is measured as follows:
ρ (x, t) =

∑
i

f (dix, t) (19)

Here, f (dix) is a Gaussian distance-dependent weight function
between the position of pedestrian i and place x:

f (dix) = 1

πR2 exp

(
−d2

ix

R2

)
(20)

where R = 0.7m is a measurement parameter. Besides,
V (x, t) denotes the local speed at place x and time t by:

V (x, t) =
∑

i ‖vi‖ f (dix, t)∑
i f (dix, t)

(21)

Fig. 5(e) characterizes the “crowd pressure” in the scene
when λ = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. The frequent pushing
phenomenon near the exit is caused by the unbalanced distri-
bution of “crowd pressure”. Note that the “crowd pressure”
at some places (in red) will be extremely large when the risk
index is excessive (λ ≥ 0.8), which may lead to the crowd
disaster and casualties. In summary, although a higher risk
index promotes the evacuation efficiency to a certain extent,
it greatly increases the probability of accidents.

F. Comparison of PHSFM With Existing Models

In recent years, some modifications to the SFM have incor-
porated the factors of pedestrian heterogeneity. Moussaïd et al.
discovered the desired speed of the crowd follows a Gaussian
distribution with the mean v̄0 = 1.29 ms−1 and the standard
deviation θ = 0.19 ms−1, which depends on the physiology
factors such as gender and age [40]. Helbing et al. adopted
the panic parameter to describe the psychology features [13]
of pedestrians. The desired speed varying from initial value
v0

i =1 ms−1 to maximum value vmax
i =2 ms−1 is affected

by the panic psychology. The above-mentioned models are
called as “GSFM” and “PSFM” in this paper, which adjust
the desired speed from the physiology and psychology levels
to adapt to more realistic situations. In the follow-up phase
of the study, the PHSFM is compared with these models to
verify its generality.

The optimal parameter estimations corresponding to
the above models are generated in PHSFM, where the
PHSFM_1 only considers the physique coefficient (α = β =
5.15, μ = 0.59 and σ = 1.2) and the PHSFM_2 merely
involves the mentality coefficient (δnor

i = 1, δmax
i = 2 and

�M = 0). They are applied to compare with the evacua-
tion process simulated by GSFM and PSFM in the library
interaction scenarios, respectively. Fig. 6(a) and 6(b) show the
average actual speed of all pedestrians simulated by the above
models after 10 trials. Note that the curves of PHSFM_1 and
GSFM are nearly consistent, and similar results are also
obtained from the simulation of PHSFM_2 and PSFM. For the
evacuation time of each pedestrian, the comparison results are
illustrated in Fig. 6(c) and 6(d). Simulation data close to the
standard line indicate the evacuation time simulated by these
models is almost consistent, with the correlations of 0.97 and
0.99. This demonstrates that GSFM and PSFM can be regarded
as two special cases of PHSFM.

Fig. 6. Comparison of PHSFM with existing models. (a)-(b) Average actual
speed of all pedestrians simulated by GSFM and PHSFM_1, PSFM and
PHSFM_2 in 10 trials. The shape points on the lines denote the mean value
and the error bars represent the standard deviation. (c)-(d) Correlation of
evacuation time simulated by GSFM and PHSFM_1, PSFM and PHSFM_2 in
10 trials. The simulation data in standard lines (in red) correspond to the
completely consistent results.

Fig. 7. Fundamental diagrams in the two simulation scenarios simulated by
PHSFM. (a) Relationship between local density and speed. (b) Relationship
between local density and flow. Our data points from the main corridor and
reading room are shown as orange and red stars, and the blue solid curves
are from Weidmann [44] as the criterion.

In a word, analogous evacuation processes simulated by
GSFM and PSFM can be generated in PHSFM by setting
suitable parameters. It implies that the PHSFM provides a
general framework for the expression of pedestrian hetero-
geneity. For example, the initial distribution curves of different
shapes can be obtained by adjusting the parameters in physique
coefficient, which is of great significance to the simulation for
specific crowd. Besides, the psychology states of stress, coop-
eration and competition are included in mentality coefficient,
permitting more elaborate psychology expressions in crowds.

G. Validation Process of PHSFM

As far as the functionality of the model is concerned,
the PHSFM successfully simulates the physiology and
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Fig. 8. Contour diagrams of heterogeneous coefficient under different combination rules and risk indexes. (a) Addictive rule, λ = 0.15. (b) Addictive rule,
λ = 0.50. (c) Addictive rule, λ = 0.85. (d) Multiplicative rule, λ = 0.15. (e) Multiplicative rule, λ = 0.50. (f) Multiplicative rule, λ = 0.85. In the vertical
direction, λ = 0.15, λ = 0.50 and λ = 0.85 represent mild, moderate and severe levels. In the horizontal direction, the additive and multiplicative rules are
adopted to combine these coefficients. Different contour lines correspond to different values of heterogeneous coefficient.

psychology heterogeneity of pedestrians, and has stronger
scalability than existing models. However, it is necessary to
further evaluate whether the model is suitable for describing
pedestrian movements. The fundamental diagram [41], [42]
is a robust quantitative method used to validate the response
of crowd dynamics models by generating the relationships
between density and speed, and between density and flow.
In our case, the local flow Q (x, t) is determined according to
the fluid-dynamic formula:

Q (x, t) = ρ (x, t) V (x, t) (22)

where the local density ρ (x, t) and the local speed V (x, t)
respectively correspond to Equation (19) and (21), details of
the above definitions are consulted in [43].

In light of the two simulation scenarios that have been
adopted, Fig. 7 shows the corresponding fundamental diagrams
by setting appropriate parameters in PHSFM. Here, a most
frequently cited fundamental diagram is used as the criterion,
the relationship between local density and speed was obtained
by collecting and fitting 25 different survey data according to
Weidmann [44]:

v (ρ) = v
f ree

0

{
1 − exp

[
−ζ

(
1

ρ
− 1

ρmax

)]}
(23)

where v
f ree

0 = 1.34 ms−1 is the free speed at low den-
sities, the maximal pedestrian density is ρmax = 5.4m−2,
and ζ = 1.913m−2 denotes a fit parameter. The blue solid
curves in Fig. 7(a) and 7(b) are from Equation (23). The
difference in data between the main corridor (orange stars)
and reading room (red stars) implies the fundamental dia-
grams vary by different facilities, since the reading room is
more prone to congestion, resulting in greater local density.

Despite of this, the fundamental diagrams in the two simula-
tion scenarios simulated by PHSFM are primarily consistent
with Weidmann’s results, indicating the effectiveness of our
model.

H. Extended Analysis of PHSFM

The physiology and psychology factors often jointly deter-
mine the pedestrian heterogeneity in real life. How to effec-
tively combine these coefficients has become an important
issue. Relevant researches have found the emergency is a
huge pressure source for pedestrians, and their endocrine and
stress responses in emergencies are significantly different from
that in normal conditions [45]. That is to say, the role of
psychology attributes becomes increasingly prominent as the
risk index λ increases, which might be used as a bond to
combine the two coefficients.

Under the premise of ignoring the internal coupling, additive
and multiplicative rules are two different mechanisms for com-
bining coefficients or signals, widely used in neurocognition
[46], signal processing [47] and other fields. When the additive
rule is used to express the function relation ◦, given that the
risk index λ can be regarded as a weight. The heterogeneous
coefficient Hi (t) is defined as a linear combination of Pi (t)
and Mi (t):

Hi (t) = (1 − λ) Pi (t)+ λMi (t) (24)

Besides, the multiplicative rule is generally applied to describe
the nonlinear variation and form a scaling correlation between
these coefficients. Thereby, the expression of heterogeneous
coefficient Hi (t) based on function relation ◦ is given by:

Hi (t) = Pi (t)
(1−λ) × Mi (t)

λ (25)
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We compare the mentioned methods of combining these
coefficients, the contour diagrams of heterogeneous coefficient
under different risk indexes are established in Fig. 8. In the
horizontal direction, the results obtained by the two combi-
nation methods are consistent. For λ = 0.15 in mild level,
the physique coefficient has a greater impact on heterogeneous
coefficient. On the contrary, the domination of mentality
coefficient is observed for λ = 0.85 in severe level. With
regard to λ = 0.50 in moderate level, it corresponds to the
critical state where both possess the same influence. In the
vertical direction, the contour lines in maps indicate the het-
erogeneous coefficient mainly changes in a linear relationship
by additive rule. However, the multiplicative rule increases
the degree of nonlinear variation, resulting in stronger restric-
tion between these coefficients. Therefore, the combina-
tions of these coefficients might be considered as spe-
cific paradigms for explicating the behavior heterogeneity of
pedestrians.

IV. DISCUSSION AND CONCLUSION

This paper presents the PHSFM, which incorporates the
pedestrian heterogeneity into the SFM. Different from tradi-
tional methods in modeling crowd motion, the quantitative
description of pedestrian heterogeneity in our model is an
essential step for modeling diverse crowds as it provides
specific coefficients to estimate the level of difference. Specif-
ically, the physique coefficient describes the stability charac-
teristic of physiology attributes, and the mentality coefficient
characterizes the dynamic transition of psychology states. The
innate character of these two coefficients is to change the
desired speed in self-driven force, for the purpose of achieving
a more realistic simulation of crowd motion.

By conducting numerical experiments in the library inter-
action scenarios, several prime and interesting conclusions
are summarized as follows: Firstly, we demonstrate how the
PHSFM can be regarded as a general framework to describe
the pedestrian heterogeneity of physiology and psychology,
which explicates the escape behavior in a more detailed way.
Secondly, the phenomenon that students appear to “catch
up” while professors perform “fall behind” in the corridor
indicates larger physique coefficients determine shorter evac-
uation time to some extent, and most staff stay behind the
crowd in the reading room denotes the mentality coefficient
effectively measures the psychological state difference for
specific crowd. Last but not least, these two coefficients are
skillfully linked to the risk index of environments. Experi-
ment results indicate the risk index has a certain impact on
both coefficients, but greater on mentality coefficient, because
the psychology attributes dominate in emergencies. These
conclusions essentially emphasize that pedestrians cannot be
simply formulated as homogeneous rigid particles assumed
in SFM.

The above conclusions provide effective guidelines for the
management of crowds in potential research fields. In archi-
tectural science, once an emergency occurs, for those “left
behind” pedestrians (i.e. older people, patient, and disabled,
etc.), how to design effective building structures to promote
their evacuation efficiency deserves in-depth consideration

[48]. With regard to transportation, the framework of pedes-
trian heterogeneity can inspire the expression of heterogeneity
involving vehicles and even roads, which is beneficial for
controlling complex traffic flows [49]. Besides, in researches
of safety science on large-scale crowds [50] (i.e. concert,
marathon, and football game, etc.), the risk index incorporated
in pedestrian heterogeneity may provide the decision-making
schemes for crowd evacuation under different types of emer-
gencies (i.e. fire, explosion, and terrorist attack, etc.). There-
fore, understanding the pedestrian heterogeneity is a crucial
step toward more reliable managements of crowds in real life.

Although the PHSFM considers the physiology and psy-
chology attributes of pedestrians, it is still a simplified model.
Many other clues involving the pedestrian heterogeneity, such
as information capture, reaction time and other complicated
factors, could alter the expression of our model. How to
quantify these factors and improve the generalization ability
of PHSFM requires a more exhaustive discussion. In fact,
our model can be viewed as a typical paradigm. Once other
relevant heterogeneous clues are identified through empirical
observations or experimental analysis, it will be easy to
incorporate them into these coefficients with mathematical
expressions. Thereby, mining these clues reflecting pedestrian
heterogeneity is an interesting task due to the fact that the
diverse forms of individual expression are consistent with our
cognitive customs.

Moreover, the pedestrian heterogeneity may not merely
affect the self-driven force. That is to say, these clues are
not confined to their own heterogeneous characteristics, but
may also be embodied in the interaction behaviors with others.
In our daily life, people follow certain behavioral patterns,
which are altered with the forms of social interaction [51]. For
diverse pedestrians, the reactions influenced by the interaction
force of other individuals vary to a large extent, resulting
in the transformation of their behaviors and trajectories.
From a group perspective, as a link between human beings,
social relationships such as kinship or friendship are implicit
mechanisms for the group formation phenomena. This may
lead to specific movement patterns, but little consideration is
given in this field at present. Thus, establishing a pedestrian
heterogeneity-based model incorporating interaction behaviors
remains a formidable challenge. In summary, despite the
PHSFM works well for the expression of low-level behavioral
pattern and psychological perception, it is inadequate when
elucidating the conception of high-level pedestrian interaction
and implied relationship.

To summarize, we have demonstrated here a general
methodology where our model highlights the prominence of
individual heterogeneity, which echoes in many aspects of the
natural science, such as the individual differences in human
social learning strategies [52], the heterogeneous topology
structure of complex networks [53], and the intra-versus
intergroup differences of populations in bioscience [54]. In the
future, further enhancing the versatility and accuracy of the
model is our target. Furthermore, we also expect that this
model will stimulate the generation of more elaborate human
motion models, which will provide new insights for the field
of crowd dynamics.
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